
Stephen Edwards and Manuel A. Pérez‐Quiñones 
edwards@cs.vt.edu, perez@cs.vt.edu

Virginia Tech
Department of Computer Science

http://web-cat.org/

NSF DUE‐0633594 and DUE-0618663 

  A plug-in-based web application
  Supports electronic submission and

automated grading of programming
assignments

  Fully customizable, scriptable
grading actions and feedback
generation

  Lots of support for grading students
based on how well they test their
own code

  At 38 institutions and growing

  Approaching 10,000 users worldwide
  Since 2003, Virginia Tech’s server alone has

processed approximately:

  264,818 program submissions
  By 4,135 students
  In 186 course sections

  Now it’s almost routine

  Tools like JUnit, and XUnit frameworks for other
languages, make it much easier

  Built-in support by many mainstream and
educational IDEs makes it much easier

  Many instructors have also experimented with
automated grading based on such testing
frameworks

  Here are our experiences in teaching test-driven
development with the help of an automated grader
over the past 3 years

  Students cannot test their own
code

  Want a culture shift in student
behavior

  A single upper-division course
would have little impact on
practices in other classes

  So: Systematically incorporate
testing practices across many
courses

CS1

CS2

OO
Design

Data
Struct

Testing
Practices

  The problem: too much focus on synthesis and
analysis too early in teaching CS

  Need to be able to read and comprehend source code

  Envision how a change in the code will result in a
change in the behavior

  Need explicit, continually reinforced practice in
hypothesizing about program behavior and then
experimentally verifying their hypotheses

  Expect students to test their own work

  Empower students by engaging them in
the process of assessing their own
programs

  Require students to demonstrate the
correctness of their own work through
testing

  Do this consistently across many courses

  Also called “test-first coding”

  Focuses on thorough unit testing at the level
of individual methods/functions

  “Write a little test, write a little code”

  Tests come first, and describe what is
expected, then followed by code, which must
be revised until all tests pass

  Encourages lots of small (even tiny) iterations

  Conceptually, easy for students
to understand and relate to

  Increases confidence in code

  Increases understanding
of requirements

  Preempts “big bang” integration

  Web application written in 100% pure Java

  Deployed as a servlet

  Built on Apple’s WebObjects

  Uses a large-grained plug-in architecture internally,
providing for easily extensible data model, UI, and
processing features

  Security: mini-plug-ins for different authentication
schemes, global user permissions, and per-course role-
based permissions

  Portability: 100% pure Java servlet for Web-CAT engine

  Extensibility: Completely language-neutral, process-
agnostic approach to grading, via site-wide or
instructor-specific grading plug-ins

  Manual grading: HTML “web printouts” of student
submissions can be directly marked up by course staff
to provide feedback

  Processing for an assignment consists of a “tool
chain” or pipeline of one or more grading plug-ins

  The instructor has complete control over which plug-
ins appear in the pipeline, in what order, and with
what parameters

  A simple and flexible, yet powerful way for plug-ins
to communicate with Web-CAT, with each other

  We have a number of existing plug-ins for Java, C++,
Scheme, Prolog, Pascal, Standard ML, …

  Instructors can write and upload their own plug-ins
  Plug-ins can be written in any language executable

on the server (we usually use Perl)

  ANT-based build of arbitrary Java projects

  PMD and Checkstyle static analysis

  ANT-based execution of student-written JUnit tests
  Carefully designed Java security policy

  Clover test coverage instrumentation

  ANT-based execution of optional instructor reference
tests

  Unified HTML web printout
  Highly configurable (PMD rules, Checkstyle rules,

supplemental jar files, supplemental data files, java
security policy, point deductions, and lots more)

  Indicates where code
can be improved

  Indicates which parts
were not tested well
enough

  Provides as many
“revise/ resubmit”
cycles as possible

  First, we measure how many of the student’s own
tests pass

  Second, we instrument student code and measure
code coverage while the student’s tests are running

  Third, we use instructor-provided reference tests to
cross-check the student’s tests

  We multiply the percentages together, so students
must excel at all three to increase their score

Newly written “untested” code

 Commerical-quality code

  All the workshop materials are on the web:

 http://web-cat.org/WCWiki/SIGCSE09Workshop

  We’ll walk through exactly how to get started

  Time for questions about the steps we have
demonstrated …

  … or questions about how to use it with your
own assignments

  Learning to write tests yourself

  Writing an instructor’s solution with tests that
thoroughly cover all the expected behavior

  Practice what you are teaching/preaching

  Extra effort before assignment is “opened” (more
prep time) but less effort after assignment is due
(less grading time)

  Students appreciate the feedback, but will avoid
thinking at (nearly) all costs

  Too much feedback encourages students to use Web-CAT
for testing instead of writing their own tests—they use it
as a development tool instead of simply to check their
work

  This limits the learning benefits, which come in large
part from students writing their own tests

  Lesson: balance providing suggestive feedback without
“giving away” the answers: lead the student to think
about the problem

  Requires greater clarity and specificity

  Requires you to explicitly decide what you wish to test,
and what you wish to leave open to student
interpretation

  Requires you to unambiguously specify the behaviors
you intend to test

  Requires preparing a reference solution before the
project is due, more upfront work for professors or TAs

  Grading is much easier as many things are taken care
by Web-CAT; course staff can focus on assessing design

  How do you write tests for the following:

  Main programs

  Code that reads/write to/from stdin/stdout
or files

  Code with graphical output

  Code with a graphical user interface

  The key: think in object-oriented terms

  There should be a principal class that does all the
work, and a really short main program

  The problem is then simply how to test the
principal class (i.e., test all of its methods)

  Make sure you specify your assignments so that
such principal classes provide enough accessors
to inspect or extract what you need to test

  The key: specify assignments so that input and
output use streams given as parameters, and are
not hard-coded to specific sources destinations

  Then use string-based streams to write test
cases; show students how

  In Java, we use Scanners and PrintWriters for all
I/O

  In C++, we use istreams and ostreams for all I/O

  The key: if graphics are only for output, you
can ignore them in testing

  Ensure there are enough methods to extract
the key data in test cases

  We used this approach for testing Karel the
Robot programs, which use graphic
animation so students can observe behavior

  This is a harder problem—maybe too distracting for
many students, depending on their level

  The key question: what is the goal in writing the
tests? Is it the GUI you want to test, some internal
behavior, or both?

  Three basic approaches:
  Specify a well-defined boundary between the GUI

and the core, and only test the core code
  Switch in an alternative implementation of the UI

classes during testing
  Test the actual GUI (see our SIGCSE 08 paper)

  If you require students to write their own tests …

  Our experience indicates students are more likely
to complete assignments on time, produce one
third less bugs, and achieve higher grades on
assignments

  It is definitely more work for the instructor

  But it definitely improves the quality of
programming assignment writeups and student
submissions

  http://web-cat.org/

  Info about using our automated
grader, getting trial accounts, etc.

  Movies of making submissions,
setting up assignments, and more

  Custom Eclipse and Visual Studio
plug-ins for C++-style TDD

  Links to our own Eclipse feature
site

  Our community is our most valuable asset!

 http://web-cat.org

  About anything covered ...

  About how we’ve used these techniques in courses

  About how we start our freshmen out in the very
first lab

  About the availability of Web-CAT

  ... Or anything else you want to ask

