
Dereferee: Exploring Pointer Mismanagement
in Student Code

Anthony Allevato, Stephen H. Edwards, and Manuel A. Pérez-Quiñones

Department of Computer Science
Virginia Polytechnic Institute and State University

2050 Torgersen Hall, MC 0106
Blacksburg, VA 24061

allevato@vt.edu, {edwards, perez}@cs.vt.edu

ABSTRACT
Dynamic memory management and the use of pointers are critical
topics in teaching the C++ language. They are also some of the
most difficult for students to grasp properly. The responsibility of
ensuring that students understand these concepts does not end
with the instructor’s lectures—a library enhanced with diagnostics
beyond those provided by the language’s run-time system itself is
a useful tool for giving students more detailed information when
their code fails.

We have designed such a toolkit, Dereferee, which students can
incorporate into their code with minimal intrusion into the
learning process. To demonstrate its effectiveness, we examine
C++ code from students in a course that relied solely on the built-
in memory management behavior of the language, without any
significant additional diagnostic or debugging facilities. We
instrument this code with Dereferee in order to explore the causes
of errors that result in program crashes and to expose hidden
faults that previously lay undetected. Dereferee provided
enhanced diagnostics for bugs in 63% of student submissions, and
pinpointed the source of 83% of abnormal program terminations.
95% of the students would have received extra diagnostic help
from using Dereferee.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computer and Information
Science Education; D.1.5 [Programming Techniques]: Object-
oriented Programming; D.2.5 [Software Engineering]: Testing
and Debugging—testing tools; D.3.2 [Programming
Languages]: Language Classifications—C++.

General Terms
Languages, Verification.

Keywords
Dynamic memory management, test-driven development, TDD,
test-first coding, smart pointer, pointer checking, dangling
pointer, memory leak, null dereference, programming assignment.

1. INTRODUCTION
Many computer science programs include C++ as a core part of
their curricula. In our courses, we have consistently seen that
memory management techniques in C++ are one of the most, if
not the most, frequent sources of difficulty for our students. This
observation is consistent with the experiences of others [5][6].

Unfortunately, the tools typically used to teach C++, such as
Microsoft Visual C++ or the GNU gcc compiler, are professional
tools that do not provide the most appropriate feedback for
educational purposes, especially for students at an introductory
level. We have also observed that the complexity of the
debugging tools available in those environments acts as a barrier
to student use; instead, they prefer “caveman debugging” such as
inserting output statements to trace execution. A better strategy
might be to “push” diagnostic information to the student, rather
than requiring them to actively “pull” these data.

We have created Dereferee to address these issues. By using this
toolkit, students receive detailed diagnostics when they make
memory-related errors in their code—errors that normally would
cause a program to crash, or worse, would silently lead to
undefined or incorrect behavior. The toolkit detects and diagnoses
40 unique kinds of pointer mismanagement errors ranging from
dereferencing null, uninitialized, or dangling pointers, to more
advanced problems such as faulty pointer arithmetic or accessing
arrays out of bounds. In addition, memory leaks are detected at
the precise moment that access to a live block of memory is lost.

In order to illustrate the real benefits of using Dereferee for
teaching C++ memory management techniques, we have collected
the source code submitted by students in an introductory C++
course that made use of an automated grading system, but only
for checking correctness of output without offering any
debugging assistance. We then modified the code to use Dereferee
and analyzed the extent to which additional bugs are discovered
and diagnosed, as well as the frequency of different types of
errors that students produce. This analysis indicates that
Dereferee provided enhanced diagnostics in 63% of student
submissions. It pinpointed the causes of 83% of abnormal
program terminations by identifying all dynamic memory
management errors. When used in conjunction with CxxTest
[2] to provide crash recovery, a statistically significant increase in
test pass rates was achieved while formerly hidden pointer errors
were explicitly revealed and diagnosed. Indeed, 95% of the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIGCSE’09, March 3–7, 2009, Chattanooga, Tennessee, USA.
Copyright 2009 ACM 978-1-60558-183-5/09/03...$5.00.

students in the study would have received additional diagnostics
on their pointer mismanagement at some point in the course.

2. BACKGROUND
Dereferee was inspired by Checkmate [7], a library that provides
a checked pointer template for C++. Like Checkmate, we
maintain a memory allocation table that keeps track of reference
counts for each block of memory allocated, but we also add other
useful properties such as the C++ type name of the object(s)
allocated, whether each block holds a single object or an array,
the length of dynamically allocated arrays, and a stack trace
identifying the location and context of the allocation. Each pointer
is viewed as an ad hoc “state machine” that transitions between
live, null, dead, and out-of-scope states as a result of the
operations performed on it during the execution of a program [7].
While the designers of Checkmate restrict their users to a small,
basic set of operations, our toolkit was created with the goals of
achieving maximum transparency (minimal intrusion into the
user’s development process) and completeness (support for as
many pointer operations as possible). We also wished to address
shortcomings in Checkmate’s design and improve its syntax and
usage. Notably, Checkmate does not support any array operations,
and in order to capture information about the locations of
allocation and deallocation actions, it uses its own non-standard
macro-based syntax instead of overloading the global new and
delete operators. That approach does not support the full
expressiveness of new expressions in C++, such as the ability to
invoke parameterized constructors or to directly allocate a derived
class object and assign it to a base class pointer (in Checkmate, an
intermediary pointer of the derived type must be used).
Furthermore, we feel that using a custom syntax is an unhelpful
departure from the standard C++ usage that we wish to teach,
particularly for students who are seeing the language for the first
time and will eventually be required to apply the skills that they
learn without the use of a toolkit such as Checkmate or Dereferee.

3. DEREFEREE USAGE
In contrast, using Dereferee only requires one to include a header
file, link to the library, and (like Checkmate) modify pointer type
declarations. The source code modification involves replacing
heap-allocated pointer declarations (variables, fields, and function
arguments) of the form T* with the construct checked(T*), a
macro call that resolves to checked_ptr<T*> after
preprocessing. The checked() macro serves two purposes.
First, it conceals the fact that the underlying declaration is
actually a template in order to prevent the need for introducing
the concept of templates earlier than an instructor may wish.
Second and more importantly, it provides a way to “compile out”
the checked pointers entirely from a release build, making the
toolkit appealing even in performance-sensitive code. We have
attempted to design Dereferee so that it is strong enough to be
usable in non-academic production environments as well as in the
classroom.
This transparency makes it easy for users to adopt Dereferee early
in their development process and also simplifies the process of
retrofitting existing code, which greatly accelerated our
experimental process. With a small Perl script, we could easily
add #include statements into each source file and replace
pointer declarations with their checked counterparts.

Once the student’s code has been instrumented with these
checked pointers, any errors or warnings will be reported with a
detailed explanation of the fault that occurred, including a full
stack trace that identifies the location and context of the error.
Even non-fatal pointer errors are identified immediately at the
point where they occur, rather than only when they affect
externally observable behavior. These errors are reported to
standard output by default, but Dereferee’s modular design allows
this behavior to be changed by linking in a different “listener”
module.

It is important to note that Dereferee’s pointers are diagnostic
only, meaning that they provide no additional semantics beyond
enhanced error reporting. This is in contrast to “smart pointers”
such as the standard C++ auto_ptr or those provided by third-
party libraries such as Boost [1], which take ownership of the
memory they point to and assume the responsibility of releasing it
automatically. In teaching our students how to manage dynamic
memory, we do not want to absolve them of this responsibility;
rather, we want to provide them with more helpful feedback about
erroneous behaviors so that they can master proper pointer
management skills. In many ways, the lack of information
provided in the context of most pointer errors is a serious inhibitor
to learning—if students do not know what they did wrong or
where to look, they are frustrated rather than educated.

4. EXPERIMENTAL EVALUATION
The following experiments analyze the student-submitted code for
three assignments in a sophomore-level data structures course that
also serves as the first exposure to C++ for many of our students.
These assignments—an ordered singly-linked list (OrderedSList),
a doubly-linked list (DList), and a binary search tree (BST)—
required the students to develop and apply a clear understanding
of pointers and memory management concepts. Students worked
individually, developed and tested their own solutions, and then
submitted them to an automatic grading system for assessment.
Each submission received feedback in the form of test results
from instructor-written reference tests. Students were allowed a
fixed number of submission attempts for each assignment: 15
each for OrderedSList and DList, and 10 for BST.
For each assignment in this experiment, we modified the
instructor’s original custom test harness to use a version of
CxxTest [2], a C++ unit testing framework similar to JUnit that
we have used in other C++ courses. CxxTest provides a uniform
way to collect data on test results and, more importantly, provides
crash recovery for test cases so that even when fatal errors such as
segmentation faults occur, the test harness can recover and
continue to execute any remaining test cases.
We first compiled and executed the students’ submitted code and
the instructor’s tests under the same conditions originally used in
the classroom in order to collect the results that correspond to the
students’ experiences. In this phase, each test case can generate a
result of success, test case failure (failure of a test case assertion
that checks behavioral correctness), abnormal termination (an
untrapped signal or exception), or unexecuted (because an earlier
test case abnormally terminated the test run). Two other possible
results, timeout and unbounded recursion, are not of interest in
this analysis, since they do not involve pointer mismanagement.
The source code for each submission was then modified to
include Dereferee support, and then compiled and executed again

to obtain more detailed information about any errors that
occurred. Test cases executed in this phase can result in any of the
three outcomes described before—success, test case failure, or
abnormal termination—or can produce a specific diagnostic
message from Dereferee describing a pointer error that was
detected. Because Dereferee prevents pointer errors from
corrupting the program state or causing memory faults, and
because CxxTest provides crash recovery for all other fatal errors,
no test cases went unexecuted in this treatment condition.
There were 91 students enrolled in this course who made a
combined total of 731 submission attempts across the three
assignments. Over this entire submission set, we have collected
results from 9,480 unique test case executions. Each of these
results includes the reason for the success or failure of the test
case under the original testing conditions as well as when using
Dereferee. Of the 9,480 test cases, there were 7,659 successes,
594 test case failures, 390 abnormal terminations, and 617
unexecuted tests under the original grading conditions.

4.1 Finding Undetected Errors
For reasons of efficiency, C++ runtime systems typically do not
rigidly police memory usage in an application beyond the most
egregious offenses (such as dereferencing a null pointer or one
that points to memory that does not belong to the application).
For instance, a C++ implementation might use a malloc/new that
allocates a large pool of memory from the operating system and
then satisfies user requests by partitioning this pool. When the
user deletes an object under this scheme, the memory is simply
marked as free in the pool but is not returned to the operating
system. This behavior can silently mask some errors, such as
exceeding an array’s bounds or dereferencing a pointer to
memory that has been freed, resulting in undefined behavior that
may or may not cause the application to fail at a later time.
We first looked at how many hidden errors went undetected in the
original testing. Specifically, we considered test cases that
resulted in success under the original testing conditions, but the
result using Dereferee was one of the toolkit’s specific error
codes. Of the 720 submissions that passed at least one test case,
21.3% (153) experienced at least one “false positive” test case
result. 48 students were responsible for making this set of

submissions, so undetected pointer errors were written by 52.7%
of students in the class at some point during the semester.
Figure 1 shows the reasons for these undetected errors. Students
made two major kinds of errors that went undetected—at least not
immediately: using a dangling pointer (a pointer to memory that
has already been deleted), and using a pointer variable that has
been declared but not yet initialized. The remaining class of
errors is interesting because it indicates problems related to arrays
and pointer arithmetic, neither of which were concepts that were
used in any of the assignments being analyzed. They show up
here as artifacts in the work of a student who mistakenly treated
pointers themselves as the values to which they pointed, and in
doing so performed arithmetic and relational operations on them.
Note that Dereferee provides more detailed explanations for the
error categories in Figure 1. Thanks to the overloaded operators
that the checked pointer template provides, we give the student
specific information at the point of an error, such as “dereferenced
a deleted pointer with the arrow operator,” “…with the star
operator,” “compared an uninitialized pointer with another value,”
“assigned an uninitialized value to a pointer”, and so forth. The
clusters in Figure 1 emphasize the higher-level causes.

4.2 Better Diagnostics for Detected Errors
When a fatal memory-related error is detected by the C++ run-
time, the result is a segmentation fault or unhandled system
exception that provides no useful information about what caused
the error or where the problem occurred. When this happens, the
student must try to locate the source of the problem by examining
their partial output up to the point of the crash to see which
operations were being performed, and even then there may not be
enough information to determine the cause.
Dereferee is helpful in these cases not only because it describes
the reason for the error in greater detail, but also because it
provides a stack trace that shows where the error occurred.
Figure 2 shows a breakdown of the 9.4% of all test cases
(892/9480) that failed due to abnormal termination under the
original conditions. Of these, Dereferee provided a more detailed
diagnosis for 83.4% (744) of the abnormal terminations. Null
pointer dereferences are by far the most common of these errors,
explaining almost half of such events. The use of uninitialized

Figure 1. Frequency of errors that were undetected in original
testing.

Figure 2. Actual reasons for errors that caused abnormal
termination during original testing.

pointers is the second most common, representing exactly one
quarter of this type of error.
Why do uninitialized pointers sometimes cause a test to crash, and
sometimes silently succeed as shown in the previous experiment?
Since the value of an uninitialized variable is simply whatever
leftover bits were previously stored in that slot, whether or not
those bits represent a valid memory address is left to chance.
Dereferee tackles this problem in a unique way. When the
memory manager is created at the start of execution, a “token” is
allocated in memory for the lifetime of the process. The address
of this token is used to represent “uninitialized” pointers. Any
checked pointer variables that are not immediately assigned
another value are set to point to this token. When a pointer is used
in an expression, we can check for this unique value and report
that the pointer is, in effect, uninitialized.
Finally, Figure 2 shows that abnormal termination remains
undiagnosed by Dereferee in 16.6% of cases. This indicates
errors that did not involve checked pointers, but rather arose from
misuse of unchecked components such as STL containers, or from
other untrapped exceptions and signals.
One other way that better diagnostics can be provided for detected
errors arises from examining test case failures, which simply
indicate the program produced incorrect results. 316 submissions
resulted in at least one test case failure without the Dereferee.
However, when using Dereferee, 19.9% of these actually resulted
in specific pointer error diagnostics that pinpointed the location of
the error. 34.2% (27) of the students in the course wrote at least
one such submission during the course, and would have received
improved feedback on what specifically they did wrong.

4.3 Information Lost In Original Testing
The crashes described in Section 4.2 pose another problem as
well. Test cases that were executed under the original conditions
are not completely independent because they run without any
form of signal protection or fault recovery. If a severe bug
manifests itself in an early test case, then the program will crash
and none of the tests that follow will be executed. This unfairly
penalizes the student, because any of those tests that would have
passed are potential points that go unearned. Furthermore, even if
those tests would not have passed, seeing the failures and
diagnostics can be helpful in identifying additional bugs.
Figure 3 shows a scatter plot of all submissions, where the x-axis
represents the percentage of tests that passed under original
conditions, including the fact that when an abnormal termination
occurred during execution, none of the tests that follow it would
be executed. The y-axis represents the percentage of tests that
passed when using Dereferee (which prevents pointer errors from
causing program crashes) and CxxTest with crash recovery
(which then handles crashes due to other causes). Most
submissions fall above the identity line, indicating that merely by
improving the automated testing environment, a significant
number of students’ scores would have improved—not just in the
numerical sense, but also to better reflect the correctness of the
work that was submitted. Some submissions occur below the
identity line as well; these are reflective of hidden errors
discussed in Section 4.1 that went undetected in the original
testing.
An analysis of variance shows the statistical significance of this
comparison. By considering all 731 submissions, grouped by

assignment and by individual student, we performed a matched
comparison between each submission under original conditions
and the same submission with the Dereferee and CxxTest. The
Dereferee pass rates depicted in Figure 3 were significantly higher
(F(1, 1) = 9.5972 with p = .0020). Using Dereferee changed the
number of passed tests for 336 of the 731 submissions—the points
that lie off the identity diagonal in Figure 3.
Of this subset, the test pass rate mean of 57.7% before Dereferee
improved to 65.6% with Dereferee; the median in this same group
improved from 53.8% to 75.0%. This shift is noticeable,
especially given the points that lie along the horizontal axis in
Figure 3—those submissions represent students who passed some
tests (as much as 85%) under the original grading conditions even
though they consistently mismanaged pointers and thus passed no
tests with the Dereferee. These submissions are representative of
the hidden errors discussed in Section 4.1. For example, a student
who consistently dereferences a dangling pointer, but happens to
be lucky enough that the deallocated block’s contents have not yet
been overwritten, would fall into this category.

4.4 Detecting Memory Leaks
The original test harness for these assignments made no effort to
detect or penalize for memory leaks, so it is likely that some
students made little effort to prevent them, either because they
knew that their scores would not be affected, or because they
simply did not understand the concepts well enough to know what
to look for and they had no assistance in finding errors.
Before examining memory leak statistics, we must be cautious
about which submissions we investigate. Assertion failures and
Dereferee memory errors cause a test case to abort prematurely
without giving the code a chance to release any allocated
resources gracefully. Even if this were not the case, such an error
could leave the program’s data structures in an undefined state
that may not be possible to clean up. Therefore, we can reliably
examine only memory leak statistics in submissions for which all
tests were successful (153 submissions, or 21% of the entire set).
Of that subset, a majority (85/153, or 56%) contained no memory
leaks. Of the remaining 68 submissions, there is significant
clustering at both extremes; 42 submissions had minor memory
leaks at less than 8% of all objects allocated, 5 submissions

Figure 3. Original test pass rates compared to what they
would have been if Dereferee were used.

leaked between 14% and 57% of all objects, and 21 submissions
leaked significantly, between 73% and 94% of all objects.
Further examination of these data revealed an interesting trend for
the BST assignment in particular: 11 of the 27 students who made
perfect submissions not only had the same number of objects
allocated (as expected in a properly functioning implementation),
but also an identical number of leaked objects. This led us to
suspect that each of these students may have made the same
logical error. Indeed, a manual inspection of each student’s code
confirmed this: in the binary tree’s remove operation, each student
had failed to delete the node after it was removed from the tree.
Had these students been using Dereferee, not only would they
have received a detailed memory usage report at the end of
execution, they would also have been notified of these leaks the
instant that any live pointers went out of scope or were
overwritten, pinning the problem’s location down precisely.
This experiment does, however, demonstrate the need for a future
enhancement: the inability to separate true memory leaks from
those that are secondary results of other bugs not only manifests
in our analysis, but provides incorrect information to the student
as well. When a test case fails, any objects allocated in that test
case up to that point are reported as leaked. While this is
technically accurate, since they are never deleted, whether or not
they would have been true leaks or are merely artifacts of the
testing framework remains unknown. We can improve this
behavior by tracking allocated objects more intelligently and
marking those that remain after a test failure as “accidentally
leaked.” This enhancement requires changes to the testing
framework and is planned for future work.

5. CONCLUSIONS
Figure 4 shows the entire submission set for the course partitioned
into categories based on a comparison between the test pass rate
sin the original testing environment and what that rate would have
been if the student and instructor had both used Dereferee. These
groups are defined based on the amount of additional information
that Dereferee provides. Disregarding memory leak information,
the toolkit provides no additional information for submissions in
Groups A and F (a combined 37% of all submissions). Those in
Group A earned perfect scores in both testing scenarios; those in
Group F failed some tests identically in both scenarios, but this
was due to test assertion failures (value correctness) rather than
memory related errors.

The remaining 63% of submissions—affecting 95.6% of students
in the study—would have benefited from using Dereferee. Of
them, Groups B and C are indicative of those in which more tests
failed due to the uncovering of hidden errors. Group D contains
those that would have passed more tests thanks to crash recovery.
Group E is the set of submissions that would have passed the
same number of tests but would have generated more useful
feedback for the student.
This analysis shows that there is a wealth of useful information
that students can gain by using Dereferee. Furthermore, when
combined with CxxTest unit tests with crash recovery, students’
scores would improve even before they investigated the added
diagnostic information that this toolkit provides by returning to
them points that were lost due to inadequacies in the testing
environment rather than their own errors.

Web-CAT [3, 4] is an automated testing and grading tool that
allows instructors the option of using CxxTest and Dereferee for
assignments in their C++ courses. From our project web site,
http://web-cat.org, interested users can download the Web-CAT
server software, a standalone distribution of the Dereferee toolkit,
or plug-ins for Eclipse and Visual Studio.NET that provide
comprehensive support for using CxxTest and Dereferee.

ACKNOWLEDGMENTS
Dereferee owes its existence to prior work on Checkmate by Scott
M. Pike and Bruce W. Weide of The Ohio State University and
Joseph E. Hollingsworth of Indiana University Southeast. We also
thank William D. McQuain of Virginia Tech, who graciously
provided the code from his course for these experiments. This
work is supported in part by the National Science Foundation
under Grant No. DUE-0618663. Any opinions, findings,
conclusions, or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views of the
National Science Foundation.

REFERENCES
[1] Boost home page. http://www.boost.org/
[2] CxxTest. http://web-cat.org/WCWiki/CxxTest
[3] Edwards, S.H. Improving student performance by evaluating how

well students test their own programs. J. Educational Resources in
Computing, 3(3):1-24, Sept. 2003.

[4] Edwards, S.H. Using software testing to move students from trial-
and-error to reflection-in-action. In Proc. 35th SIGCSE Tech. Symp.
Computing Science Education, ACM, 2004, pp. 26-30.

[5] Lahtinen, E., Ala-Mutka, K., and Järvinen, H.M. A study of the
difficulties of novice programmers. In Proc.10th Ann. SIGCSE Conf.
Innovation and Tech. in Computer Science Education, ACM, 2005,
pp. 14–18.

[6] Milne, I. and Rowe, G. Difficulties in learning and teaching
programming—views of students and tutors. Education and
Information Technologies, 7(1):55–66, 2002.

[7] Pike, S.M., Weide, B.W., and Hollingsworth, J.E. Checkmate:
Cornering C++ dynamic memory errors with checked pointers. In
Proc. 31st SIGCSE Tech. Symp. Computer Science Education, ACM
Press, 2000, pp. 352-356.

Figure 4. Categorization of submissions based on tests passed
under original testing vs. tests passed with Dereferee.

