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ABSTRACT 
Dynamic memory management and the use of pointers are critical 
topics in teaching the C++ language.  They are also some of the 
most difficult for students to grasp properly. The responsibility of 
ensuring that students understand these concepts does not end 
with the instructor’s lectures—a library enhanced with diagnostics 
beyond those provided by the language’s run-time system itself is 
a useful tool for giving students more detailed information when 
their code fails. 

We have designed such a toolkit, Dereferee, which students can 
incorporate into their code with minimal intrusion into the 
learning process. To demonstrate its effectiveness, we examine 
C++ code from students in a course that relied solely on the built-
in memory management behavior of the language, without any 
significant additional diagnostic or debugging facilities. We 
instrument this code with Dereferee in order to explore the causes 
of errors that result in program crashes and to expose hidden 
faults that previously lay undetected.  Dereferee provided 
enhanced diagnostics for bugs in 63% of student submissions, and 
pinpointed the source of 83% of abnormal program terminations.  
95% of the students would have received extra diagnostic help 
from using Dereferee. 

Categories and Subject Descriptors 
K.3.2 [Computers and Education]: Computer and Information 
Science Education; D.1.5 [Programming Techniques]: Object-
oriented Programming; D.2.5 [Software Engineering]: Testing 
and Debugging—testing tools; D.3.2 [Programming 
Languages]: Language Classifications—C++. 

General Terms 
Languages, Verification. 

Keywords 
Dynamic memory management, test-driven development, TDD, 
test-first coding, smart pointer, pointer checking, dangling 
pointer, memory leak, null dereference, programming assignment. 

1. INTRODUCTION 
Many computer science programs include C++ as a core part of 
their curricula. In our courses, we have consistently seen that 
memory management techniques in C++ are one of the most, if 
not the most, frequent sources of difficulty for our students.  This 
observation is consistent with the experiences of others [5][6]. 

Unfortunately, the tools typically used to teach C++, such as 
Microsoft Visual C++ or the GNU gcc compiler, are professional 
tools that do not provide the most appropriate feedback for 
educational purposes, especially for students at an introductory 
level. We have also observed that the complexity of the 
debugging tools available in those environments acts as a barrier 
to student use; instead, they prefer “caveman debugging” such as 
inserting output statements to trace execution. A better strategy 
might be to “push” diagnostic information to the student, rather 
than requiring them to actively “pull” these data. 

We have created Dereferee to address these issues. By using this 
toolkit, students receive detailed diagnostics when they make 
memory-related errors in their code—errors that normally would 
cause a program to crash, or worse, would silently lead to 
undefined or incorrect behavior. The toolkit detects and diagnoses 
40 unique kinds of pointer mismanagement errors ranging from 
dereferencing null, uninitialized, or dangling pointers, to more 
advanced problems such as faulty pointer arithmetic or accessing 
arrays out of bounds. In addition, memory leaks are detected at 
the precise moment that access to a live block of memory is lost. 

In order to illustrate the real benefits of using Dereferee for 
teaching C++ memory management techniques, we have collected 
the source code submitted by students in an introductory C++ 
course that made use of an automated grading system, but only 
for checking correctness of output without offering any 
debugging assistance. We then modified the code to use Dereferee 
and analyzed the extent to which additional bugs are discovered 
and diagnosed, as well as the frequency of different types of 
errors that students produce.  This analysis indicates that 
Dereferee provided enhanced diagnostics in 63% of student 
submissions.  It pinpointed the causes of 83% of abnormal 
program terminations by identifying all dynamic memory 
management errors.  When used in conjunction with CxxTest 
[2] to provide crash recovery, a statistically significant increase in 
test pass rates was achieved while formerly hidden pointer errors 
were explicitly revealed and diagnosed.  Indeed, 95% of the 
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students in the study would have received additional diagnostics 
on their pointer mismanagement at some point in the course. 

2. BACKGROUND 
Dereferee was inspired by Checkmate [7], a library that provides 
a checked pointer template for C++. Like Checkmate, we 
maintain a memory allocation table that keeps track of reference 
counts for each block of memory allocated, but we also add other 
useful properties such as the C++ type name of the object(s) 
allocated, whether each block holds a single object or an array, 
the length of dynamically allocated arrays, and a stack trace 
identifying the location and context of the allocation. Each pointer 
is viewed as an ad hoc “state machine” that transitions between 
live, null, dead, and out-of-scope states as a result of the 
operations performed on it during the execution of a program [7]. 
While the designers of Checkmate restrict their users to a small, 
basic set of operations, our toolkit was created with the goals of 
achieving maximum transparency (minimal intrusion into the 
user’s development process) and completeness (support for as 
many pointer operations as possible). We also wished to address 
shortcomings in Checkmate’s design and improve its syntax and 
usage. Notably, Checkmate does not support any array operations, 
and in order to capture information about the locations of 
allocation and deallocation actions, it uses its own non-standard 
macro-based syntax instead of overloading the global new and 
delete operators. That approach does not support the full 
expressiveness of new expressions in C++, such as the ability to 
invoke parameterized constructors or to directly allocate a derived 
class object and assign it to a base class pointer (in Checkmate, an 
intermediary pointer of the derived type must be used). 
Furthermore, we feel that using a custom syntax is an unhelpful 
departure from the standard C++ usage that we wish to teach, 
particularly for students who are seeing the language for the first 
time and will eventually be required to apply the skills that they 
learn without the use of a toolkit such as Checkmate or Dereferee. 

3. DEREFEREE USAGE 
In contrast, using Dereferee only requires one to include a header 
file, link to the library, and (like Checkmate) modify pointer type 
declarations.  The source code modification involves replacing 
heap-allocated pointer declarations (variables, fields, and function 
arguments) of the form T* with the construct checked(T*), a 
macro call that resolves to checked_ptr<T*> after 
preprocessing.  The checked() macro serves two purposes. 
First, it conceals the fact that the underlying declaration is 
actually a template in order to prevent the need for introducing 
the concept of templates earlier than an instructor may wish. 
Second and more importantly, it provides a way to “compile out” 
the checked pointers entirely from a release build, making the 
toolkit appealing even in performance-sensitive code. We have 
attempted to design Dereferee so that it is strong enough to be 
usable in non-academic production environments as well as in the 
classroom. 
This transparency makes it easy for users to adopt Dereferee early 
in their development process and also simplifies the process of 
retrofitting existing code, which greatly accelerated our 
experimental process. With a small Perl script, we could easily 
add #include statements into each source file and replace 
pointer declarations with their checked counterparts. 

Once the student’s code has been instrumented with these 
checked pointers, any errors or warnings will be reported with a 
detailed explanation of the fault that occurred, including a full 
stack trace that identifies the location and context of the error.  
Even non-fatal pointer errors are identified immediately at the 
point where they occur, rather than only when they affect 
externally observable behavior.  These errors are reported to 
standard output by default, but Dereferee’s modular design allows 
this behavior to be changed by linking in a different “listener” 
module. 

It is important to note that Dereferee’s pointers are diagnostic 
only, meaning that they provide no additional semantics beyond 
enhanced error reporting. This is in contrast to “smart pointers” 
such as the standard C++ auto_ptr or those provided by third-
party libraries such as Boost [1], which take ownership of the 
memory they point to and assume the responsibility of releasing it 
automatically. In teaching our students how to manage dynamic 
memory, we do not want to absolve them of this responsibility; 
rather, we want to provide them with more helpful feedback about 
erroneous behaviors so that they can master proper pointer 
management skills.  In many ways, the lack of information 
provided in the context of most pointer errors is a serious inhibitor 
to learning—if students do not know what they did wrong or 
where to look, they are frustrated rather than educated. 

4. EXPERIMENTAL EVALUATION 
The following experiments analyze the student-submitted code for 
three assignments in a sophomore-level data structures course that 
also serves as the first exposure to C++ for many of our students.  
These assignments—an ordered singly-linked list (OrderedSList), 
a doubly-linked list (DList), and a binary search tree (BST)—
required the students to develop and apply a clear understanding 
of pointers and memory management concepts. Students worked 
individually, developed and tested their own solutions, and then 
submitted them to an automatic grading system for assessment.  
Each submission received feedback in the form of test results 
from instructor-written reference tests.  Students were allowed a 
fixed number of submission attempts for each assignment: 15 
each for OrderedSList and DList, and 10 for BST. 
For each assignment in this experiment, we modified the 
instructor’s original custom test harness to use a version of 
CxxTest [2], a C++ unit testing framework similar to JUnit that 
we have used in other C++ courses.  CxxTest provides a uniform 
way to collect data on test results and, more importantly, provides 
crash recovery for test cases so that even when fatal errors such as 
segmentation faults occur, the test harness can recover and 
continue to execute any remaining test cases. 
We first compiled and executed the students’ submitted code and 
the instructor’s tests under the same conditions originally used in 
the classroom in order to collect the results that correspond to the 
students’ experiences. In this phase, each test case can generate a 
result of success, test case failure (failure of a test case assertion 
that checks behavioral correctness), abnormal termination (an 
untrapped signal or exception), or unexecuted (because an earlier 
test case abnormally terminated the test run). Two other possible 
results, timeout and unbounded recursion, are not of interest in 
this analysis, since they do not involve pointer mismanagement. 
The source code for each submission was then modified to 
include Dereferee support, and then compiled and executed again 



to obtain more detailed information about any errors that 
occurred. Test cases executed in this phase can result in any of the 
three outcomes described before—success, test case failure, or 
abnormal termination—or can produce a specific diagnostic 
message from Dereferee describing a pointer error that was 
detected.  Because Dereferee prevents pointer errors from 
corrupting the program state or causing memory faults, and 
because CxxTest provides crash recovery for all other fatal errors, 
no test cases went unexecuted in this treatment condition. 
There were 91 students enrolled in this course who made a 
combined total of 731 submission attempts across the three 
assignments. Over this entire submission set, we have collected 
results from 9,480 unique test case executions. Each of these 
results includes the reason for the success or failure of the test 
case under the original testing conditions as well as when using 
Dereferee.  Of the 9,480 test cases, there were 7,659 successes, 
594 test case failures, 390 abnormal terminations, and 617 
unexecuted tests under the original grading conditions. 

4.1 Finding Undetected Errors 
For reasons of efficiency, C++ runtime systems typically do not 
rigidly police memory usage in an application beyond the most 
egregious offenses (such as dereferencing a null pointer or one 
that points to memory that does not belong to the application).  
For instance, a C++ implementation might use a malloc/new that 
allocates a large pool of memory from the operating system and 
then satisfies user requests by partitioning this pool. When the 
user deletes an object under this scheme, the memory is simply 
marked as free in the pool but is not returned to the operating 
system. This behavior can silently mask some errors, such as 
exceeding an array’s bounds or dereferencing a pointer to 
memory that has been freed, resulting in undefined behavior that 
may or may not cause the application to fail at a later time. 
We first looked at how many hidden errors went undetected in the 
original testing. Specifically, we considered test cases that 
resulted in success under the original testing conditions, but the 
result using Dereferee was one of the toolkit’s specific error 
codes. Of the 720 submissions that passed at least one test case, 
21.3% (153) experienced at least one “false positive” test case 
result.  48 students were responsible for making this set of 

submissions, so undetected pointer errors were written by 52.7% 
of students in the class at some point during the semester. 
Figure 1 shows the reasons for these undetected errors. Students 
made two major kinds of errors that went undetected—at least not 
immediately: using a dangling pointer (a pointer to memory that 
has already been deleted), and using a pointer variable that has 
been declared but not yet initialized.  The remaining class of 
errors is interesting because it indicates problems related to arrays 
and pointer arithmetic, neither of which were concepts that were 
used in any of the assignments being analyzed. They show up 
here as artifacts in the work of a student who mistakenly treated 
pointers themselves as the values to which they pointed, and in 
doing so performed arithmetic and relational operations on them. 
Note that Dereferee provides more detailed explanations for the 
error categories in Figure 1. Thanks to the overloaded operators 
that the checked pointer template provides, we give the student 
specific information at the point of an error, such as “dereferenced 
a deleted pointer with the arrow operator,” “…with the star 
operator,” “compared an uninitialized pointer with another value,” 
“assigned an uninitialized value to a pointer”, and so forth. The 
clusters in Figure 1 emphasize the higher-level causes. 

4.2 Better Diagnostics for Detected Errors 
When a fatal memory-related error is detected by the C++ run-
time, the result is a segmentation fault or unhandled system 
exception that provides no useful information about what caused 
the error or where the problem occurred. When this happens, the 
student must try to locate the source of the problem by examining 
their partial output up to the point of the crash to see which 
operations were being performed, and even then there may not be 
enough information to determine the cause. 
Dereferee is helpful in these cases not only because it describes 
the reason for the error in greater detail, but also because it 
provides a stack trace that shows where the error occurred.  
Figure 2 shows a breakdown of the 9.4% of all test cases 
(892/9480) that failed due to abnormal termination under the 
original conditions.  Of these, Dereferee provided a more detailed 
diagnosis for 83.4% (744) of the abnormal terminations.  Null 
pointer dereferences are by far the most common of these errors, 
explaining almost half of such events. The use of uninitialized 

Figure 1. Frequency of errors that were undetected in original 
testing. 

Figure 2. Actual reasons for errors that caused abnormal 
termination during original testing. 



pointers is the second most common, representing exactly one 
quarter of this type of error. 
Why do uninitialized pointers sometimes cause a test to crash, and 
sometimes silently succeed as shown in the previous experiment? 
Since the value of an uninitialized variable is simply whatever 
leftover bits were previously stored in that slot, whether or not 
those bits represent a valid memory address is left to chance. 
Dereferee tackles this problem in a unique way.  When the 
memory manager is created at the start of execution, a “token” is 
allocated in memory for the lifetime of the process.  The address 
of this token is used to represent “uninitialized” pointers. Any 
checked pointer variables that are not immediately assigned 
another value are set to point to this token. When a pointer is used 
in an expression, we can check for this unique value and report 
that the pointer is, in effect, uninitialized. 
Finally, Figure 2 shows that abnormal termination remains 
undiagnosed by Dereferee in 16.6% of cases.  This indicates 
errors that did not involve checked pointers, but rather arose from 
misuse of unchecked components such as STL containers, or from 
other untrapped exceptions and signals. 
One other way that better diagnostics can be provided for detected 
errors arises from examining test case failures, which simply 
indicate the program produced incorrect results.  316 submissions 
resulted in at least one test case failure without the Dereferee.  
However, when using Dereferee, 19.9% of these actually resulted 
in specific pointer error diagnostics that pinpointed the location of 
the error.  34.2% (27) of the students in the course wrote at least 
one such submission during the course, and would have received 
improved feedback on what specifically they did wrong. 

4.3 Information Lost In Original Testing 
The crashes described in Section 4.2 pose another problem as 
well. Test cases that were executed under the original conditions 
are not completely independent because they run without any 
form of signal protection or fault recovery.  If a severe bug 
manifests itself in an early test case, then the program will crash 
and none of the tests that follow will be executed. This unfairly 
penalizes the student, because any of those tests that would have 
passed are potential points that go unearned. Furthermore, even if 
those tests would not have passed, seeing the failures and 
diagnostics can be helpful in identifying additional bugs. 
Figure 3 shows a scatter plot of all submissions, where the x-axis 
represents the percentage of tests that passed under original 
conditions, including the fact that when an abnormal termination 
occurred during execution, none of the tests that follow it would 
be executed. The y-axis represents the percentage of tests that 
passed when using Dereferee (which prevents pointer errors from 
causing program crashes) and CxxTest with crash recovery 
(which then handles crashes due to other causes).  Most 
submissions fall above the identity line, indicating that merely by 
improving the automated testing environment, a significant 
number of students’ scores would have improved—not just in the 
numerical sense, but also to better reflect the correctness of the 
work that was submitted. Some submissions occur below the 
identity line as well; these are reflective of hidden errors 
discussed in Section 4.1 that went undetected in the original 
testing. 
An analysis of variance shows the statistical significance of this 
comparison. By considering all 731 submissions, grouped by 

assignment and by individual student, we performed a matched 
comparison between each submission under original conditions 
and the same submission with the Dereferee and CxxTest. The 
Dereferee pass rates depicted in Figure 3 were significantly higher 
(F(1, 1) = 9.5972 with p = .0020).  Using Dereferee changed the 
number of passed tests for 336 of the 731 submissions—the points 
that lie off the identity diagonal in Figure 3. 
Of this subset, the test pass rate mean of 57.7% before Dereferee 
improved to 65.6% with Dereferee; the median in this same group 
improved from 53.8% to 75.0%.  This shift is noticeable, 
especially given the points that lie along the horizontal axis in 
Figure 3—those submissions represent students who passed some 
tests (as much as 85%) under the original grading conditions even 
though they consistently mismanaged pointers and thus passed no 
tests with the Dereferee.  These submissions are representative of 
the hidden errors discussed in Section 4.1.  For example, a student 
who consistently dereferences a dangling pointer, but happens to 
be lucky enough that the deallocated block’s contents have not yet 
been overwritten, would fall into this category. 

4.4 Detecting Memory Leaks 
The original test harness for these assignments made no effort to 
detect or penalize for memory leaks, so it is likely that some 
students made little effort to prevent them, either because they 
knew that their scores would not be affected, or because they 
simply did not understand the concepts well enough to know what 
to look for and they had no assistance in finding errors. 
Before examining memory leak statistics, we must be cautious 
about which submissions we investigate. Assertion failures and 
Dereferee memory errors cause a test case to abort prematurely 
without giving the code a chance to release any allocated 
resources gracefully.  Even if this were not the case, such an error 
could leave the program’s data structures in an undefined state 
that may not be possible to clean up. Therefore, we can reliably 
examine only memory leak statistics in submissions for which all 
tests were successful (153 submissions, or 21% of the entire set). 
Of that subset, a majority (85/153, or 56%) contained no memory 
leaks. Of the remaining 68 submissions, there is significant 
clustering at both extremes; 42 submissions had minor memory 
leaks at less than 8% of all objects allocated, 5 submissions 

Figure 3. Original test pass rates compared to what they 
would have been if Dereferee were used. 



leaked between 14% and 57% of all objects, and 21 submissions 
leaked significantly, between 73% and 94% of all objects. 
Further examination of these data revealed an interesting trend for 
the BST assignment in particular: 11 of the 27 students who made 
perfect submissions not only had the same number of objects 
allocated (as expected in a properly functioning implementation), 
but also an identical number of leaked objects. This led us to 
suspect that each of these students may have made the same 
logical error.  Indeed, a manual inspection of each student’s code 
confirmed this: in the binary tree’s remove operation, each student 
had failed to delete the node after it was removed from the tree. 
Had these students been using Dereferee, not only would they 
have received a detailed memory usage report at the end of 
execution, they would also have been notified of these leaks the 
instant that any live pointers went out of scope or were 
overwritten, pinning the problem’s location down precisely. 
This experiment does, however, demonstrate the need for a future 
enhancement: the inability to separate true memory leaks from 
those that are secondary results of other bugs not only manifests 
in our analysis, but provides incorrect information to the student 
as well. When a test case fails, any objects allocated in that test 
case up to that point are reported as leaked.  While this is 
technically accurate, since they are never deleted, whether or not 
they would have been true leaks or are merely artifacts of the 
testing framework remains unknown. We can improve this 
behavior by tracking allocated objects more intelligently and 
marking those that remain after a test failure as “accidentally 
leaked.” This enhancement requires changes to the testing 
framework and is planned for future work. 

5. CONCLUSIONS 
Figure 4 shows the entire submission set for the course partitioned 
into categories based on a comparison between the test pass rate 
sin the original testing environment and what that rate would have 
been if the student and instructor had both used Dereferee.  These 
groups are defined based on the amount of additional information 
that Dereferee provides. Disregarding memory leak information, 
the toolkit provides no additional information for submissions in 
Groups A and F (a combined 37% of all submissions). Those in 
Group A earned perfect scores in both testing scenarios; those in 
Group F failed some tests identically in both scenarios, but this 
was due to test assertion failures (value correctness) rather than 
memory related errors. 

The remaining 63% of submissions—affecting 95.6% of students 
in the study—would have benefited from using Dereferee. Of 
them, Groups B and C are indicative of those in which more tests 
failed due to the uncovering of hidden errors.  Group D contains 
those that would have passed more tests thanks to crash recovery.  
Group E is the set of submissions that would have passed the 
same number of tests but would have generated more useful 
feedback for the student. 
This analysis shows that there is a wealth of useful information 
that students can gain by using Dereferee. Furthermore, when 
combined with CxxTest unit tests with crash recovery, students’ 
scores would improve even before they investigated the added 
diagnostic information that this toolkit provides by returning to 
them points that were lost due to inadequacies in the testing 
environment rather than their own errors. 

Web-CAT [3, 4] is an automated testing and grading tool that 
allows instructors the option of using CxxTest and Dereferee for 
assignments in their C++ courses. From our project web site, 
http://web-cat.org, interested users can download the Web-CAT 
server software, a standalone distribution of the Dereferee toolkit, 
or plug-ins for Eclipse and Visual Studio.NET that provide 
comprehensive support for using CxxTest and Dereferee. 
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Figure 4. Categorization of submissions based on tests passed 
under original testing vs. tests passed with Dereferee. 


